Shortcuts

torch.slogdet

torch.slogdet(input) -> (Tensor, Tensor)

Calculates the sign and log absolute value of the determinant(s) of a square matrix or batches of square matrices.

Note

If input has zero determinant, this returns (0, -inf).

Note

Backward through slogdet() internally uses SVD results when input is not invertible. In this case, double backward through slogdet() will be unstable in when input doesn’t have distinct singular values. See svd() for details.

Parameters

input (Tensor) – the input tensor of size (*, n, n) where * is zero or more batch dimensions.

Returns

A namedtuple (sign, logabsdet) containing the sign of the determinant, and the log value of the absolute determinant.

Example:

>>> A = torch.randn(3, 3)
>>> A
tensor([[ 0.0032, -0.2239, -1.1219],
        [-0.6690,  0.1161,  0.4053],
        [-1.6218, -0.9273, -0.0082]])
>>> torch.det(A)
tensor(-0.7576)
>>> torch.logdet(A)
tensor(nan)
>>> torch.slogdet(A)
torch.return_types.slogdet(sign=tensor(-1.), logabsdet=tensor(-0.2776))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources