TorchScript¶
TorchScript is a way to create serializable and optimizable models from PyTorch code. Any TorchScript program can be saved from a Python process and loaded in a process where there is no Python dependency.
We provide tools to incrementally transition a model from a pure Python program to a TorchScript program that can be run independently from Python, such as in a standalone C++ program. This makes it possible to train models in PyTorch using familiar tools in Python and then export the model via TorchScript to a production environment where Python programs may be disadvantageous for performance and multi-threading reasons.
For a gentle introduction to TorchScript, see the Introduction to TorchScript tutorial.
For an end-to-end example of converting a PyTorch model to TorchScript and running it in C++, see the Loading a PyTorch Model in C++ tutorial.
Creating TorchScript Code¶
|
Scripting a function or |
|
Trace a function and return an executable or |
|
Trace a module and return an executable |
|
Creates an asynchronous task executing func and a reference to the value of the result of this execution. |
|
Forces completion of a torch.jit.Future[T] asynchronous task, returning the result of the task. |
|
|
Functionally equivalent to a |
|
|
Freezing a |
|
Save an offline version of this module for use in a separate process. |
|
Load a |
|
This decorator indicates to the compiler that a function or method should be ignored and left as a Python function. |
|
This decorator indicates to the compiler that a function or method should be ignored and replaced with the raising of an exception. |
Mixing Tracing and Scripting¶
In many cases either tracing or scripting is an easier approach for converting a model to TorchScript. Tracing and scripting can be composed to suit the particular requirements of a part of a model.
Scripted functions can call traced functions. This is particularly useful when you need to use control-flow around a simple feed-forward model. For instance the beam search of a sequence to sequence model will typically be written in script but can call an encoder module generated using tracing.
Example (calling a traced function in script):
import torch
def foo(x, y):
return 2 * x + y
traced_foo = torch.jit.trace(foo, (torch.rand(3), torch.rand(3)))
@torch.jit.script
def bar(x):
return traced_foo(x, x)
Traced functions can call script functions. This is useful when a small part of a model requires some control-flow even though most of the model is just a feed-forward network. Control-flow inside of a script function called by a traced function is preserved correctly.
Example (calling a script function in a traced function):
import torch
@torch.jit.script
def foo(x, y):
if x.max() > y.max():
r = x
else:
r = y
return r
def bar(x, y, z):
return foo(x, y) + z
traced_bar = torch.jit.trace(bar, (torch.rand(3), torch.rand(3), torch.rand(3)))
This composition also works for nn.Module
s as well, where it can be used to generate
a submodule using tracing that can be called from the methods of a script module.
Example (using a traced module):
import torch
import torchvision
class MyScriptModule(torch.nn.Module):
def __init__(self):
super(MyScriptModule, self).__init__()
self.means = torch.nn.Parameter(torch.tensor([103.939, 116.779, 123.68])
.resize_(1, 3, 1, 1))
self.resnet = torch.jit.trace(torchvision.models.resnet18(),
torch.rand(1, 3, 224, 224))
def forward(self, input):
return self.resnet(input - self.means)
my_script_module = torch.jit.script(MyScriptModule())
TorchScript Language¶
TorchScript is a statically typed subset of Python, so many Python features apply directly to TorchScript. See the full TorchScript Language Reference for details.
Built-in Functions and Modules¶
TorchScript supports the use of most PyTorch functions and many Python built-ins. See TorchScript Builtins for a full reference of supported functions.
PyTorch Functions and Modules¶
TorchScript supports a subset of the tensor and neural network
functions that PyTorch provides. Most methods on Tensor as well as functions in
the torch
namespace, all functions in torch.nn.functional
and
most modules from torch.nn
are supported in TorchScript.
See TorchScript Unsupported Pytorch Constructs for a list of unsupported PyTorch functions and modules.
Python Functions and Modules¶
Many of Python’s built-in functions are supported in TorchScript.
The math
module is also supported (see math Module for details), but no other Python modules
(built-in or third party) are supported.
Python Language Reference Comparison¶
For a full listing of supported Python features, see Python Language Reference Coverage.
Debugging¶
Disable JIT for Debugging¶
-
PYTORCH_JIT
¶
Setting the environment variable PYTORCH_JIT=0
will disable all script
and tracing annotations. If there is hard-to-debug error in one of your
TorchScript model, you can use this flag to force everything to run using native
Python. Since TorchScript (scripting and tracing) are disabled with this flag,
you can use tools like pdb
to debug the model code. For example:
@torch.jit.script
def scripted_fn(x : torch.Tensor):
for i in range(12):
x = x + x
return x
def fn(x):
x = torch.neg(x)
import pdb; pdb.set_trace()
return scripted_fn(x)
traced_fn = torch.jit.trace(fn, (torch.rand(4, 5),))
traced_fn(torch.rand(3, 4))
Debugging this script with pdb
works except for when we invoke the
@torch.jit.script
function. We can globally disable
JIT, so that we can call the @torch.jit.script
function as a normal Python function and not compile it. If the above script
is called disable_jit_example.py
, we can invoke it like so:
$ PYTORCH_JIT=0 python disable_jit_example.py
and we will be able to step into the @torch.jit.script
function as a normal Python function. To disable the
TorchScript compiler for a specific function, see
@torch.jit.ignore
.
Inspecting Code¶
TorchScript provides a code pretty-printer for all ScriptModule
instances. This
pretty-printer gives an interpretation of the script method’s code as valid
Python syntax. For example:
@torch.jit.script
def foo(len):
# type: (int) -> torch.Tensor
rv = torch.zeros(3, 4)
for i in range(len):
if i < 10:
rv = rv - 1.0
else:
rv = rv + 1.0
return rv
print(foo.code)
A ScriptModule
with a single forward
method will have an attribute
code
, which you can use to inspect the ScriptModule
’s code.
If the ScriptModule
has more than one method, you will need to access
.code
on the method itself and not the module. We can inspect the
code of a method named foo
on a ScriptModule
by accessing .foo.code
.
The example above produces this output:
def foo(len: int) -> Tensor:
rv = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
rv0 = rv
for i in range(len):
if torch.lt(i, 10):
rv1 = torch.sub(rv0, 1., 1)
else:
rv1 = torch.add(rv0, 1., 1)
rv0 = rv1
return rv0
This is TorchScript’s compilation of the code for the forward
method.
You can use this to ensure TorchScript (tracing or scripting) has captured
your model code correctly.
Interpreting Graphs¶
TorchScript also has a representation at a lower level than the code pretty- printer, in the form of IR graphs.
TorchScript uses a static single assignment (SSA) intermediate representation (IR) to represent computation. The instructions in this format consist of ATen (the C++ backend of PyTorch) operators and other primitive operators, including control flow operators for loops and conditionals. As an example:
@torch.jit.script
def foo(len):
# type: (int) -> torch.Tensor
rv = torch.zeros(3, 4)
for i in range(len):
if i < 10:
rv = rv - 1.0
else:
rv = rv + 1.0
return rv
print(foo.graph)
graph
follows the same rules described in the inspecting-code section
with regard to forward
method lookup.
The example script above produces the graph:
graph(%len.1 : int):
%24 : int = prim::Constant[value=1]()
%17 : bool = prim::Constant[value=1]() # test.py:10:5
%12 : bool? = prim::Constant()
%10 : Device? = prim::Constant()
%6 : int? = prim::Constant()
%1 : int = prim::Constant[value=3]() # test.py:9:22
%2 : int = prim::Constant[value=4]() # test.py:9:25
%20 : int = prim::Constant[value=10]() # test.py:11:16
%23 : float = prim::Constant[value=1]() # test.py:12:23
%4 : int[] = prim::ListConstruct(%1, %2)
%rv.1 : Tensor = aten::zeros(%4, %6, %6, %10, %12) # test.py:9:10
%rv : Tensor = prim::Loop(%len.1, %17, %rv.1) # test.py:10:5
block0(%i.1 : int, %rv.14 : Tensor):
%21 : bool = aten::lt(%i.1, %20) # test.py:11:12
%rv.13 : Tensor = prim::If(%21) # test.py:11:9
block0():
%rv.3 : Tensor = aten::sub(%rv.14, %23, %24) # test.py:12:18
-> (%rv.3)
block1():
%rv.6 : Tensor = aten::add(%rv.14, %23, %24) # test.py:14:18
-> (%rv.6)
-> (%17, %rv.13)
return (%rv)
Take the instruction %rv.1 : Tensor = aten::zeros(%4, %6, %6, %10, %12) # test.py:9:10
for
example.
%rv.1 : Tensor
means we assign the output to a (unique) value namedrv.1
, that value is ofTensor
type and that we do not know its concrete shape.aten::zeros
is the operator (equivalent totorch.zeros
) and the input list(%4, %6, %6, %10, %12)
specifies which values in scope should be passed as inputs. The schema for built-in functions likeaten::zeros
can be found at Builtin Functions.# test.py:9:10
is the location in the original source file that generated this instruction. In this case, it is a file named test.py, on line 9, and at character 10.
Notice that operators can also have associated blocks
, namely the
prim::Loop
and prim::If
operators. In the graph print-out, these
operators are formatted to reflect their equivalent source code forms
to facilitate easy debugging.
Graphs can be inspected as shown to confirm that the computation described
by a ScriptModule
is correct, in both automated and manual fashion, as
described below.
Tracer¶
Tracing Edge Cases¶
There are some edge cases that exist where the trace of a given Python function/module will not be representative of the underlying code. These cases can include:
Tracing of control flow that is dependent on inputs (e.g. tensor shapes)
Tracing of in-place operations of tensor views (e.g. indexing on the left-hand side of an assignment)
Note that these cases may in fact be traceable in the future.
Automatic Trace Checking¶
One way to automatically catch many errors in traces is by using check_inputs
on the torch.jit.trace()
API. check_inputs
takes a list of tuples
of inputs that will be used to re-trace the computation and verify the
results. For example:
def loop_in_traced_fn(x):
result = x[0]
for i in range(x.size(0)):
result = result * x[i]
return result
inputs = (torch.rand(3, 4, 5),)
check_inputs = [(torch.rand(4, 5, 6),), (torch.rand(2, 3, 4),)]
traced = torch.jit.trace(loop_in_traced_fn, inputs, check_inputs=check_inputs)
Gives us the following diagnostic information:
ERROR: Graphs differed across invocations!
Graph diff:
graph(%x : Tensor) {
%1 : int = prim::Constant[value=0]()
%2 : int = prim::Constant[value=0]()
%result.1 : Tensor = aten::select(%x, %1, %2)
%4 : int = prim::Constant[value=0]()
%5 : int = prim::Constant[value=0]()
%6 : Tensor = aten::select(%x, %4, %5)
%result.2 : Tensor = aten::mul(%result.1, %6)
%8 : int = prim::Constant[value=0]()
%9 : int = prim::Constant[value=1]()
%10 : Tensor = aten::select(%x, %8, %9)
- %result : Tensor = aten::mul(%result.2, %10)
+ %result.3 : Tensor = aten::mul(%result.2, %10)
? ++
%12 : int = prim::Constant[value=0]()
%13 : int = prim::Constant[value=2]()
%14 : Tensor = aten::select(%x, %12, %13)
+ %result : Tensor = aten::mul(%result.3, %14)
+ %16 : int = prim::Constant[value=0]()
+ %17 : int = prim::Constant[value=3]()
+ %18 : Tensor = aten::select(%x, %16, %17)
- %15 : Tensor = aten::mul(%result, %14)
? ^ ^
+ %19 : Tensor = aten::mul(%result, %18)
? ^ ^
- return (%15);
? ^
+ return (%19);
? ^
}
This message indicates to us that the computation differed between when
we first traced it and when we traced it with the check_inputs
. Indeed,
the loop within the body of loop_in_traced_fn
depends on the shape
of the input x
, and thus when we try another x
with a different
shape, the trace differs.
In this case, data-dependent control flow like this can be captured using
torch.jit.script()
instead:
def fn(x):
result = x[0]
for i in range(x.size(0)):
result = result * x[i]
return result
inputs = (torch.rand(3, 4, 5),)
check_inputs = [(torch.rand(4, 5, 6),), (torch.rand(2, 3, 4),)]
scripted_fn = torch.jit.script(fn)
print(scripted_fn.graph)
#print(str(scripted_fn.graph).strip())
for input_tuple in [inputs] + check_inputs:
torch.testing.assert_allclose(fn(*input_tuple), scripted_fn(*input_tuple))
Which produces:
graph(%x : Tensor) {
%5 : bool = prim::Constant[value=1]()
%1 : int = prim::Constant[value=0]()
%result.1 : Tensor = aten::select(%x, %1, %1)
%4 : int = aten::size(%x, %1)
%result : Tensor = prim::Loop(%4, %5, %result.1)
block0(%i : int, %7 : Tensor) {
%10 : Tensor = aten::select(%x, %1, %i)
%result.2 : Tensor = aten::mul(%7, %10)
-> (%5, %result.2)
}
return (%result);
}
Tracer Warnings¶
The tracer produces warnings for several problematic patterns in traced computation. As an example, take a trace of a function that contains an in-place assignment on a slice (a view) of a Tensor:
def fill_row_zero(x):
x[0] = torch.rand(*x.shape[1:2])
return x
traced = torch.jit.trace(fill_row_zero, (torch.rand(3, 4),))
print(traced.graph)
Produces several warnings and a graph which simply returns the input:
fill_row_zero.py:4: TracerWarning: There are 2 live references to the data region being modified when tracing in-place operator copy_ (possibly due to an assignment). This might cause the trace to be incorrect, because all other views that also reference this data will not reflect this change in the trace! On the other hand, if all other views use the same memory chunk, but are disjoint (e.g. are outputs of torch.split), this might still be safe.
x[0] = torch.rand(*x.shape[1:2])
fill_row_zero.py:6: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error:
Not within tolerance rtol=1e-05 atol=1e-05 at input[0, 1] (0.09115803241729736 vs. 0.6782537698745728) and 3 other locations (33.00%)
traced = torch.jit.trace(fill_row_zero, (torch.rand(3, 4),))
graph(%0 : Float(3, 4)) {
return (%0);
}
We can fix this by modifying the code to not use the in-place update, but
rather build up the result tensor out-of-place with torch.cat
:
def fill_row_zero(x):
x = torch.cat((torch.rand(1, *x.shape[1:2]), x[1:2]), dim=0)
return x
traced = torch.jit.trace(fill_row_zero, (torch.rand(3, 4),))
print(traced.graph)
Frequently Asked Questions¶
Q: I would like to train a model on GPU and do inference on CPU. What are the best practices?
First convert your model from GPU to CPU and then save it, like so:
cpu_model = gpu_model.cpu() sample_input_cpu = sample_input_gpu.cpu() traced_cpu = torch.jit.trace(traced_cpu, sample_input_cpu) torch.jit.save(traced_cpu, "cpu.pth") traced_gpu = torch.jit.trace(traced_gpu, sample_input_gpu) torch.jit.save(traced_gpu, "gpu.pth") # ... later, when using the model: if use_gpu: model = torch.jit.load("gpu.pth") else: model = torch.jit.load("cpu.pth") model(input)This is recommended because the tracer may witness tensor creation on a specific device, so casting an already-loaded model may have unexpected effects. Casting the model before saving it ensures that the tracer has the correct device information.
Q: How do I store attributes on a ScriptModule
?
Say we have a model like:
import torch class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.x = 2 def forward(self): return self.x m = torch.jit.script(Model())If
Model
is instantiated it will result in a compilation error since the compiler doesn’t know aboutx
. There are 4 ways to inform the compiler of attributes onScriptModule
:1.
nn.Parameter
- Values wrapped innn.Parameter
will work as they do onnn.Module
s2.
register_buffer
- Values wrapped inregister_buffer
will work as they do onnn.Module
s. This is equivalent to an attribute (see 4) of typeTensor
.3. Constants - Annotating a class member as
Final
(or adding it to a list called__constants__
at the class definition level) will mark the contained names as constants. Constants are saved directly in the code of the model. See builtin-constants for details.4. Attributes - Values that are a supported type can be added as mutable attributes. Most types can be inferred but some may need to be specified, see module attributes for details.
Q: I would like to trace module’s method but I keep getting this error:
RuntimeError: Cannot insert a Tensor that requires grad as a constant. Consider making it a parameter or input, or detaching the gradient
This error usually means that the method you are tracing uses a module’s parameters and you are passing the module’s method instead of the module instance (e.g.
my_module_instance.forward
vsmy_module_instance
).
Invoking
trace
with a module’s method captures module parameters (which may require gradients) as constants.On the other hand, invoking
trace
with module’s instance (e.g.my_module
) creates a new module and correctly copies parameters into the new module, so they can accumulate gradients if required.To trace a specific method on a module, see
torch.jit.trace_module
Appendix¶
Migrating to PyTorch 1.2 Recursive Scripting API¶
This section details the changes to TorchScript in PyTorch 1.2. If you are new to TorchScript you can skip this section. There are two main changes to the TorchScript API with PyTorch 1.2.
1. torch.jit.script
will now attempt to recursively compile functions,
methods, and classes that it encounters. Once you call torch.jit.script
,
compilation is “opt-out”, rather than “opt-in”.
2. torch.jit.script(nn_module_instance)
is now the preferred way to create
ScriptModule
s, instead of inheriting from torch.jit.ScriptModule
.
These changes combine to provide a simpler, easier-to-use API for converting
your nn.Module
s into ScriptModule
s, ready to be optimized and executed in a
non-Python environment.
The new usage looks like this:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x))
my_model = Model()
my_scripted_model = torch.jit.script(my_model)
The module’s
forward
is compiled by default. Methods called fromforward
are lazily compiled in the order they are used inforward
.To compile a method other than
forward
that is not called fromforward
, add@torch.jit.export
.To stop the compiler from compiling a method, add
@torch.jit.ignore
or@torch.jit.unused
.@ignore
leaves themethod as a call to python, and
@unused
replaces it with an exception.@ignored
cannot be exported;@unused
can.Most attribute types can be inferred, so
torch.jit.Attribute
is not necessary. For empty container types, annotate their types using PEP 526-style class annotations.Constants can be marked with a
Final
class annotation instead of adding the name of the member to__constants__
.Python 3 type hints can be used in place of
torch.jit.annotate
- As a result of these changes, the following items are considered deprecated and should not appear in new code:
The
@torch.jit.script_method
decoratorClasses that inherit from
torch.jit.ScriptModule
The
torch.jit.Attribute
wrapper classThe
__constants__
arrayThe
torch.jit.annotate
function
Modules¶
Warning
The @torch.jit.ignore
annotation’s behavior changes in
PyTorch 1.2. Before PyTorch 1.2 the @ignore decorator was used to make a function
or method callable from code that is exported. To get this functionality back,
use @torch.jit.unused()
. @torch.jit.ignore
is now equivalent
to @torch.jit.ignore(drop=False)
. See @torch.jit.ignore
and @torch.jit.unused
for details.
When passed to the torch.jit.script
function, a torch.nn.Module
’s data is
copied to a ScriptModule
and the TorchScript compiler compiles the module.
The module’s forward
is compiled by default. Methods called from forward
are
lazily compiled in the order they are used in forward
, as well as any
@torch.jit.export
methods.
-
torch.jit.
export
(fn)[source]¶ This decorator indicates that a method on an
nn.Module
is used as an entry point into aScriptModule
and should be compiled.forward
implicitly is assumed to be an entry point, so it does not need this decorator. Functions and methods called fromforward
are compiled as they are seen by the compiler, so they do not need this decorator either.Example (using
@torch.jit.export
on a method):import torch import torch.nn as nn class MyModule(nn.Module): def implicitly_compiled_method(self, x): return x + 99 # `forward` is implicitly decorated with `@torch.jit.export`, # so adding it here would have no effect def forward(self, x): return x + 10 @torch.jit.export def another_forward(self, x): # When the compiler sees this call, it will compile # `implicitly_compiled_method` return self.implicitly_compiled_method(x) def unused_method(self, x): return x - 20 # `m` will contain compiled methods: # `forward` # `another_forward` # `implicitly_compiled_method` # `unused_method` will not be compiled since it was not called from # any compiled methods and wasn't decorated with `@torch.jit.export` m = torch.jit.script(MyModule())
Functions¶
Functions don’t change much, they can be decorated with @torch.jit.ignore
or torch.jit.unused
if needed.
# Same behavior as pre-PyTorch 1.2
@torch.jit.script
def some_fn():
return 2
# Marks a function as ignored, if nothing
# ever calls it then this has no effect
@torch.jit.ignore
def some_fn2():
return 2
# As with ignore, if nothing calls it then it has no effect.
# If it is called in script it is replaced with an exception.
@torch.jit.unused
def some_fn3():
import pdb; pdb.set_trace()
return 4
# Doesn't do anything, this function is already
# the main entry point
@torch.jit.export
def some_fn4():
return 2
TorchScript Classes¶
Warning
TorchScript class support is experimental. Currently it is best suited
for simple record-like types (think a NamedTuple
with methods
attached).
Everything in a user defined TorchScript Class is
exported by default, functions can be decorated with @torch.jit.ignore
if needed.
Attributes¶
The TorchScript compiler needs to know the types of module attributes. Most types
can be inferred from the value of the member. Empty lists and dicts cannot have their
types inferred and must have their types annotated with PEP 526-style class annotations.
If a type cannot be inferred and is not explicitly annotated, it will not be added as an attribute
to the resulting ScriptModule
Old API:
from typing import Dict
import torch
class MyModule(torch.jit.ScriptModule):
def __init__(self):
super(MyModule, self).__init__()
self.my_dict = torch.jit.Attribute({}, Dict[str, int])
self.my_int = torch.jit.Attribute(20, int)
m = MyModule()
New API:
from typing import Dict
class MyModule(torch.nn.Module):
my_dict: Dict[str, int]
def __init__(self):
super(MyModule, self).__init__()
# This type cannot be inferred and must be specified
self.my_dict = {}
# The attribute type here is inferred to be `int`
self.my_int = 20
def forward(self):
pass
m = torch.jit.script(MyModule())
Constants¶
The Final
type constructor can be used to mark members as constant. If members are not marked constant, they will be copied to the resulting ScriptModule
as an attribute. Using Final
opens opportunities for optimization if the value is known to be fixed and gives additional type safety.
Old API:
class MyModule(torch.jit.ScriptModule):
__constants__ = ['my_constant']
def __init__(self):
super(MyModule, self).__init__()
self.my_constant = 2
def forward(self):
pass
m = MyModule()
New API:
try:
from typing_extensions import Final
except:
# If you don't have `typing_extensions` installed, you can use a
# polyfill from `torch.jit`.
from torch.jit import Final
class MyModule(torch.nn.Module):
my_constant: Final[int]
def __init__(self):
super(MyModule, self).__init__()
self.my_constant = 2
def forward(self):
pass
m = torch.jit.script(MyModule())
Variables¶
Containers are assumed to have type Tensor
and be non-optional (see
Default Types for more information). Previously, torch.jit.annotate
was used to
tell the TorchScript compiler what the type should be. Python 3 style type hints are
now supported.
import torch
from typing import Dict, Optional
@torch.jit.script
def make_dict(flag: bool):
x: Dict[str, int] = {}
x['hi'] = 2
b: Optional[int] = None
if flag:
b = 2
return x, b