torch.nn.utils.prune.custom_from_mask¶
- 
torch.nn.utils.prune.custom_from_mask(module, name, mask)[source]¶ Prunes tensor corresponding to parameter called
nameinmoduleby applying the pre-computed mask inmask. Modifies module in place (and also return the modified module) by: 1) adding a named buffer calledname+'_mask'corresponding to the binary mask applied to the parameternameby the pruning method. 2) replacing the parameternameby its pruned version, while the original (unpruned) parameter is stored in a new parameter namedname+'_orig'.- Parameters
 - Returns
 modified (i.e. pruned) version of the input module
- Return type
 module (nn.Module)
Examples
>>> m = prune.custom_from_mask( nn.Linear(5, 3), name='bias', mask=torch.Tensor([0, 1, 0]) ) >>> print(m.bias_mask) tensor([0., 1., 0.])