Shortcuts

torch.logspace

torch.logspace(start, end, steps=100, base=10.0, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

Returns a one-dimensional tensor of steps points logarithmically spaced with base base between basestart{\text{base}}^{\text{start}} and baseend{\text{base}}^{\text{end}} .

The output tensor is 1-D of size steps.

Parameters
  • start (float) – the starting value for the set of points

  • end (float) – the ending value for the set of points

  • steps (int) – number of points to sample between start and end. Default: 100.

  • base (float) – base of the logarithm function. Default: 10.0.

  • out (Tensor, optional) – the output tensor.

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).

  • layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

Example:

>>> torch.logspace(start=-10, end=10, steps=5)
tensor([ 1.0000e-10,  1.0000e-05,  1.0000e+00,  1.0000e+05,  1.0000e+10])
>>> torch.logspace(start=0.1, end=1.0, steps=5)
tensor([  1.2589,   2.1135,   3.5481,   5.9566,  10.0000])
>>> torch.logspace(start=0.1, end=1.0, steps=1)
tensor([1.2589])
>>> torch.logspace(start=2, end=2, steps=1, base=2)
tensor([4.0])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources