Shortcuts

torch.is_nonzero

torch.is_nonzero(input) -> (bool)

Returns True if the input is a single element tensor which is not equal to zero after type conversions. i.e. not equal to torch.tensor([0.]) or torch.tensor([0]) or torch.tensor([False]). Throws a RuntimeError if torch.numel() != 1 (even in case of sparse tensors).

Parameters

input (Tensor) – the PyTorch tensor to test

Example:

>>> torch.is_nonzero(torch.tensor([0.]))
False
>>> torch.is_nonzero(torch.tensor([1.5]))
True
>>> torch.is_nonzero(torch.tensor([False]))
False
>>> torch.is_nonzero(torch.tensor([3]))
True
>>> torch.is_nonzero(torch.tensor([1, 3, 5]))
Traceback (most recent call last):
...
RuntimeError: bool value of Tensor with more than one value is ambiguous
>>> torch.is_nonzero(torch.tensor([]))
Traceback (most recent call last):
...
RuntimeError: bool value of Tensor with no values is ambiguous

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources