torch.empty¶
-
torch.
empty
(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) → Tensor¶ Returns a tensor filled with uninitialized data. The shape of the tensor is defined by the variable argument
size
.- Parameters
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.contiguous_format
.
Example:
>>> torch.empty(2, 3) tensor(1.00000e-08 * [[ 6.3984, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000]])