torch.div¶
-
torch.div(input, other, out=None) → Tensor¶ Divides each element of the input
inputwith the scalarotherand returns a new resulting tensor.Warning
Integer division using div is no longer supported, and in a future release div will perform true division as in Python 3. Use
torch.true_divide()ortorch.floor_divide()(// in Python), instead.If the
torch.dtypeofinputandotherdiffer, thetorch.dtypeof the result tensor is determined following rules described in the type promotion documentation. Ifoutis specified, the result must be castable to thetorch.dtypeof the specified output tensor. Integral division by zero leads to undefined behavior.- Parameters
input (Tensor) – the input tensor.
other (Number) – the number to be divided to each element of
input
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(5) >>> a tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637]) >>> torch.div(a, 0.5) tensor([ 0.7620, 2.5548, -0.5944, -0.7439, 0.9275])
-
torch.div(input, other, out=None) → Tensor
Each element of the tensor
inputis divided by each element of the tensorother. The resulting tensor is returned.The shapes of
inputandothermust be broadcastable. If thetorch.dtypeofinputandotherdiffer, thetorch.dtypeof the result tensor is determined following rules described in the type promotion documentation. Ifoutis specified, the result must be castable to thetorch.dtypeof the specified output tensor. Integral division by zero leads to undefined behavior.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[-0.3711, -1.9353, -0.4605, -0.2917], [ 0.1815, -1.0111, 0.9805, -1.5923], [ 0.1062, 1.4581, 0.7759, -1.2344], [-0.1830, -0.0313, 1.1908, -1.4757]]) >>> b = torch.randn(4) >>> b tensor([ 0.8032, 0.2930, -0.8113, -0.2308]) >>> torch.div(a, b) tensor([[-0.4620, -6.6051, 0.5676, 1.2637], [ 0.2260, -3.4507, -1.2086, 6.8988], [ 0.1322, 4.9764, -0.9564, 5.3480], [-0.2278, -0.1068, -1.4678, 6.3936]])