torch.bmm¶
-
torch.
bmm
(input, mat2, deterministic=False, out=None) → Tensor¶ Performs a batch matrix-matrix product of matrices stored in
input
andmat2
.input
andmat2
must be 3-D tensors each containing the same number of matrices.If
input
is a tensor,mat2
is a tensor,out
will be a tensor.Note
This function does not broadcast. For broadcasting matrix products, see
torch.matmul()
.- Parameters
input (Tensor) – the first batch of matrices to be multiplied
mat2 (Tensor) – the second batch of matrices to be multiplied
deterministic (bool, optional) – flag to choose between a faster non-deterministic calculation, or a slower deterministic calculation. This argument is only available for sparse-dense CUDA bmm. Default:
False
out (Tensor, optional) – the output tensor.
Example:
>>> input = torch.randn(10, 3, 4) >>> mat2 = torch.randn(10, 4, 5) >>> res = torch.bmm(input, mat2) >>> res.size() torch.Size([10, 3, 5])