torch.bmm¶
-
torch.bmm(input, mat2, deterministic=False, out=None) → Tensor¶ Performs a batch matrix-matrix product of matrices stored in
inputandmat2.inputandmat2must be 3-D tensors each containing the same number of matrices.If
inputis a tensor,mat2is a tensor,outwill be a tensor.Note
This function does not broadcast. For broadcasting matrix products, see
torch.matmul().- Parameters
input (Tensor) – the first batch of matrices to be multiplied
mat2 (Tensor) – the second batch of matrices to be multiplied
deterministic (bool, optional) – flag to choose between a faster non-deterministic calculation, or a slower deterministic calculation. This argument is only available for sparse-dense CUDA bmm. Default:
Falseout (Tensor, optional) – the output tensor.
Example:
>>> input = torch.randn(10, 3, 4) >>> mat2 = torch.randn(10, 4, 5) >>> res = torch.bmm(input, mat2) >>> res.size() torch.Size([10, 3, 5])