Source code for torch.quantization.fake_quantize
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from torch.nn import Module
from .observer import MovingAverageMinMaxObserver, HistogramObserver, MovingAveragePerChannelMinMaxObserver, _with_args
[docs]class FakeQuantize(Module):
r""" Simulate the quantize and dequantize operations in training time.
The output of this module is given by
x_out = (clamp(round(x/scale + zero_point), quant_min, quant_max)-zero_point)*scale
* :attr:`scale` defines the scale factor used for quantization.
* :attr:`zero_point` specifies the quantized value to which 0 in floating point maps to
* :attr:`quant_min` specifies the minimum allowable quantized value.
* :attr:`quant_max` specifies the maximum allowable quantized value.
* :attr:`fake_quant_enable` controls the application of fake quantization on tensors, note that
statistics can still be updated.
* :attr:`observer_enable` controls statistics collection on tensors
* :attr:`dtype` specifies the quantized dtype that is being emulated with fake-quantization,
allowable values are torch.qint8 and torch.quint8. The values of quant_min and
quant_max should be chosen to be consistent with the dtype
Args:
observer (module): Module for observing statistics on input tensors and calculating scale
and zero-point.
quant_min (int): The minimum allowable quantized value.
quant_max (int): The maximum allowable quantized value.
observer_kwargs (optional): Arguments for the observer module
Attributes:
observer (Module): User provided module that collects statistics on the input tensor and
provides a method to calculate scale and zero-point.
"""
def __init__(self, observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255, **observer_kwargs):
super(FakeQuantize, self).__init__()
assert quant_min <= quant_max, \
'quant_min must be less than or equal to quant_max'
self.quant_min = quant_min
self.quant_max = quant_max
# fake_quant_enabled and observer_enabled are buffers to support their
# replication in DDP. Data type is uint8 because NCCL does not support
# bool tensors.
self.register_buffer('fake_quant_enabled', torch.tensor([1], dtype=torch.uint8))
self.register_buffer('observer_enabled', torch.tensor([1], dtype=torch.uint8))
self.activation_post_process = observer(**observer_kwargs)
assert torch.iinfo(self.activation_post_process.dtype).min <= quant_min, 'quant_min out of bound'
assert quant_max <= torch.iinfo(self.activation_post_process.dtype).max, 'quant_max out of bound'
self.register_buffer('scale', torch.tensor([1.0]))
self.register_buffer('zero_point', torch.tensor([0]))
self.dtype = self.activation_post_process.dtype
self.qscheme = self.activation_post_process.qscheme
self.ch_axis = self.activation_post_process.ch_axis \
if hasattr(self.activation_post_process, 'ch_axis') else -1
@torch.jit.export
def enable_fake_quant(self, enabled=True):
# type: (bool) -> FakeQuantize
self.fake_quant_enabled[0] = 1 if enabled else 0
return self
@torch.jit.export
def disable_fake_quant(self):
return self.enable_fake_quant(False)
@torch.jit.export
def enable_observer(self, enabled=True):
# type: (bool) -> FakeQuantize
self.observer_enabled[0] = 1 if enabled else 0
return self
@torch.jit.export
def disable_observer(self):
return self.enable_observer(False)
@torch.jit.export
def calculate_qparams(self):
return self.activation_post_process.calculate_qparams()
def forward(self, X):
if self.observer_enabled[0] == 1:
self.activation_post_process(X.detach())
_scale, _zero_point = self.calculate_qparams()
_scale, _zero_point = _scale.to(self.scale.device), _zero_point.to(self.zero_point.device)
self.scale.resize_(_scale.shape)
self.scale.copy_(_scale)
self.zero_point.resize_(_zero_point.shape)
self.zero_point.copy_(_zero_point)
if self.fake_quant_enabled[0] == 1:
if self.qscheme == torch.per_channel_symmetric or self.qscheme == torch.per_channel_affine:
X = torch.fake_quantize_per_channel_affine(X, self.scale, self.zero_point,
self.ch_axis, self.quant_min, self.quant_max)
else:
X = torch.fake_quantize_per_tensor_affine(X, float(self.scale),
int(self.zero_point), self.quant_min,
self.quant_max)
return X
with_args = classmethod(_with_args)
@torch.jit.export
def extra_repr(self):
return 'fake_quant_enabled={}, observer_enabled={},\
scale={}, zero_point={}'.format(
self.fake_quant_enabled, self.observer_enabled,
self.scale, self.zero_point)
def _save_to_state_dict(self, destination, prefix, keep_vars):
# We cannot currently register scalar values as buffers, so need to manually
# specify serialization here.
super(FakeQuantize, self)._save_to_state_dict(destination, prefix, keep_vars)
destination[prefix + 'scale'] = self.scale
destination[prefix + 'zero_point'] = self.zero_point
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
# Removing this function throws an error that the the size of the loaded tensor does not match the original size
# i.e., These buffers start out with numel 0 and become numel 1 once they have their first forward pass.
local_state = ['scale', 'zero_point']
for name in local_state:
key = prefix + name
if key in state_dict:
val = state_dict[key]
setattr(self, name, val)
elif strict:
missing_keys.append(key)
super(FakeQuantize, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs)
default_fake_quant = FakeQuantize.with_args(observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255,
dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=True)
default_weight_fake_quant = FakeQuantize.with_args(observer=MovingAverageMinMaxObserver, quant_min=-128, quant_max=127,
dtype=torch.qint8, qscheme=torch.per_tensor_symmetric, reduce_range=False)
default_per_channel_weight_fake_quant = FakeQuantize.with_args(observer=MovingAveragePerChannelMinMaxObserver,
quant_min=-128,
quant_max=127,
dtype=torch.qint8,
qscheme=torch.per_channel_symmetric,
reduce_range=False,
ch_axis=0)
default_histogram_fake_quant = FakeQuantize.with_args(observer=HistogramObserver,
quant_min=0,
quant_max=255,
dtype=torch.quint8,
qscheme=torch.per_tensor_affine,
reduce_range=True)
def disable_fake_quant(mod):
if type(mod) == FakeQuantize:
mod.disable_fake_quant()
def enable_fake_quant(mod):
if type(mod) == FakeQuantize:
mod.enable_fake_quant()
def disable_observer(mod):
if type(mod) == FakeQuantize:
mod.disable_observer()
def enable_observer(mod):
if type(mod) == FakeQuantize:
mod.enable_observer()