Source code for torch.nn.qat.modules.conv
from __future__ import absolute_import, division, print_function, unicode_literals
import torch.nn as nn
from torch.nn.intrinsic import ConvReLU2d
[docs]class Conv2d(nn.Conv2d):
    r"""
    A Conv2d module attached with FakeQuantize modules for both output
    activation and weight, used for quantization aware training.
    We adopt the same interface as `torch.nn.Conv2d`, please see
    https://pytorch.org/docs/stable/nn.html?highlight=conv2d#torch.nn.Conv2d
    for documentation.
    Similar to `torch.nn.Conv2d`, with FakeQuantize modules initialized to
    default.
    Attributes:
        activation_post_process: fake quant module for output activation
        weight_fake_quant: fake quant module for weight
    """
    _FLOAT_MODULE = nn.Conv2d
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=True, padding_mode='zeros', qconfig=None):
        super(Conv2d, self).__init__(in_channels, out_channels, kernel_size,
                                     stride=stride, padding=padding, dilation=dilation,
                                     groups=groups, bias=bias, padding_mode=padding_mode)
        assert qconfig, 'qconfig must be provided for QAT module'
        self.qconfig = qconfig
        self.activation_post_process = qconfig.activation()
        self.weight_fake_quant = qconfig.weight()
    def forward(self, input):
        return self.activation_post_process(
            self._conv_forward(input, self.weight_fake_quant(self.weight)))
[docs]    @classmethod
    def from_float(cls, mod, qconfig=None):
        r"""Create a qat module from a float module or qparams_dict
            Args: `mod` a float module, either produced by torch.quantization utilities
            or directly from user
        """
        assert type(mod) == cls._FLOAT_MODULE, 'qat.' + cls.__name__ + '.from_float only works for ' + \
            
cls._FLOAT_MODULE.__name__
        if not qconfig:
            assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
            assert mod.qconfig, 'Input float module must have a valid qconfig'
        if type(mod) == ConvReLU2d:
            mod = mod[0]
        qconfig = mod.qconfig
        qat_conv = cls(mod.in_channels, mod.out_channels, mod.kernel_size,
                       stride=mod.stride, padding=mod.padding, dilation=mod.dilation,
                       groups=mod.groups, bias=mod.bias is not None,
                       padding_mode=mod.padding_mode, qconfig=qconfig)
        qat_conv.weight = mod.weight
        qat_conv.bias = mod.bias
        return qat_conv