Shortcuts

Source code for torch.nn.intrinsic.quantized.modules.linear_relu

from __future__ import absolute_import, division, print_function, unicode_literals
import torch.nn.quantized as nnq
import torch.nn.intrinsic
import torch

[docs]class LinearReLU(nnq.Linear): r""" A LinearReLU module fused from Linear and ReLU modules We adopt the same interface as :class:`torch.nn.quantized.Linear`. Attributes: Same as torch.nn.quantized.Linear Examples:: >>> m = nn.intrinsic.LinearReLU(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ _FLOAT_MODULE = torch.nn.intrinsic.LinearReLU def __init__(self, in_features, out_features, bias=True, dtype=torch.qint8): super(LinearReLU, self).__init__(in_features, out_features, bias, dtype) def forward(self, input): Y_q = torch.ops.quantized.linear_relu( input, self._packed_params._packed_params, float(self.scale), int(self.zero_point)) return Y_q def _get_name(self): return 'QuantizedLinearReLU' @classmethod def from_float(cls, mod): return super(LinearReLU, cls).from_float(mod)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources