Source code for torch.nn.intrinsic.quantized.modules.linear_relu
from __future__ import absolute_import, division, print_function, unicode_literals
import torch.nn.quantized as nnq
import torch.nn.intrinsic
import torch
[docs]class LinearReLU(nnq.Linear):
r"""
A LinearReLU module fused from Linear and ReLU modules
We adopt the same interface as :class:`torch.nn.quantized.Linear`.
Attributes:
Same as torch.nn.quantized.Linear
Examples::
>>> m = nn.intrinsic.LinearReLU(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
_FLOAT_MODULE = torch.nn.intrinsic.LinearReLU
def __init__(self, in_features, out_features, bias=True, dtype=torch.qint8):
super(LinearReLU, self).__init__(in_features, out_features, bias, dtype)
def forward(self, input):
Y_q = torch.ops.quantized.linear_relu(
input, self._packed_params._packed_params,
float(self.scale),
int(self.zero_point))
return Y_q
def _get_name(self):
return 'QuantizedLinearReLU'
@classmethod
def from_float(cls, mod):
return super(LinearReLU, cls).from_float(mod)