Shortcuts

Source code for torch.nn.intrinsic.modules.fused

from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from torch.nn import Conv1d, Conv2d, Conv3d, ReLU, Linear, BatchNorm1d, BatchNorm2d, BatchNorm3d

[docs]class ConvReLU1d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 1d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, relu): assert type(conv) == Conv1d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(relu)) super(ConvReLU1d, self).__init__(conv, relu)
[docs]class ConvReLU2d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 2d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, relu): assert type(conv) == Conv2d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(relu)) super(ConvReLU2d, self).__init__(conv, relu)
[docs]class ConvReLU3d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 3d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, relu): assert type(conv) == Conv3d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(relu)) super(ConvReLU3d, self).__init__(conv, relu)
[docs]class LinearReLU(torch.nn.Sequential): r"""This is a sequential container which calls the Linear and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, linear, relu): assert type(linear) == Linear and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(linear), type(relu)) super(LinearReLU, self).__init__(linear, relu)
[docs]class ConvBn1d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn): assert type(conv) == Conv1d and type(bn) == BatchNorm1d, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(bn)) super(ConvBn1d, self).__init__(conv, bn)
[docs]class ConvBn2d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn): assert type(conv) == Conv2d and type(bn) == BatchNorm2d, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(bn)) super(ConvBn2d, self).__init__(conv, bn)
[docs]class ConvBnReLU1d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn, relu): assert type(conv) == Conv1d and type(bn) == BatchNorm1d and \ type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ .format(type(conv), type(bn), type(relu)) super(ConvBnReLU1d, self).__init__(conv, bn, relu)
[docs]class ConvBnReLU2d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn, relu): assert type(conv) == Conv2d and type(bn) == BatchNorm2d and \ type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ .format(type(conv), type(bn), type(relu)) super(ConvBnReLU2d, self).__init__(conv, bn, relu)
class ConvBn3d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn): assert type(conv) == Conv3d and type(bn) == BatchNorm3d, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(bn)) super(ConvBn3d, self).__init__(conv, bn) class ConvBnReLU3d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn, relu): assert type(conv) == Conv3d and type(bn) == BatchNorm3d and \ type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ .format(type(conv), type(bn), type(relu)) super(ConvBnReLU3d, self).__init__(conv, bn, relu) class BNReLU2d(torch.nn.Sequential): r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, batch_norm, relu): assert type(batch_norm) == BatchNorm2d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(batch_norm), type(relu)) super(BNReLU2d, self).__init__(batch_norm, relu) class BNReLU3d(torch.nn.Sequential): r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, batch_norm, relu): assert type(batch_norm) == BatchNorm3d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(batch_norm), type(relu)) super(BNReLU3d, self).__init__(batch_norm, relu)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources