Source code for torch.futures
from typing import Generic, TypeVar
import torch
class _PyFuture(torch._C.Future):
def wait(self):
r"""
Block until the value of this ``Future`` is ready.
Returns:
The value held by this ``Future``. If the function (callback or RPC)
creating the value has thrown an error, this ``wait`` method will
also throw an error.
"""
return super().wait()
def then(self, callback):
r"""
Append the given callback function to this ``Future``, which will be run
when the ``Future`` is completed. Multiple callbacks can be added to
the same ``Future``, and will be invoked in the same order as they were
added. The callback must take one argument, which is the reference to
this ``Future``. The callback function can use the ``Future.wait()`` API
to get the value.
Arguments:
callback(``Callable``): a ``Callable`` that takes this ``Future`` as
the only argument.
Returns:
A new ``Future`` object that holds the return value of the
``callback`` and will be marked as completed when the given
``callback`` finishes.
Example::
>>> import torch
>>>
>>> def callback(fut):
>>> print(f"RPC return value is {fut.wait()}.")
>>>
>>> fut = torch.futures.Future()
>>> # The inserted callback will print the return value when
>>> # receiving the response from "worker1"
>>> cb_fut = fut.then(callback)
>>> chain_cb_fut = cb_fut.then(
>>> lambda x : print(f"Chained cb done. {x.wait()}")
>>> )
>>> fut.set_result(5)
>>>
>>> # Outputs are:
>>> # RPC return value is 5.
>>> # Chained cb done. None
"""
return super().then(callback)
def set_result(self, result):
r"""
Set the result for this ``Future``, which will mark this ``Future`` as
completed and trigger all attached callbacks. Note that a ``Future``
cannot be marked completed twice.
Arguments:
result (object): the result object of this ``Future``.
Example::
>>> import threading
>>> import time
>>> import torch
>>>
>>> def slow_set_future(fut, value):
>>> time.sleep(0.5)
>>> fut.set_result(value)
>>>
>>> fut = torch.futures.Future()
>>> t = threading.Thread(
>>> target=slow_set_future,
>>> args=(fut, torch.ones(2) * 3)
>>> )
>>> t.start()
>>>
>>> print(fut.wait()) # tensor([3., 3.])
>>> t.join()
"""
super().set_result(result)
[docs]def collect_all(futures):
r"""
Collects the provided :class:`~torch.futures.Future` objects into a single
combined :class:`~torch.futures.Future` that is completed when all of the
sub-futures are completed.
Arguments:
futures (list): a list of :class:`~torch.futures.Future` objects.
Returns:
Returns a :class:`~torch.futures.Future` object to a list of the passed
in Futures.
Example::
>>> import torch
>>>
>>> fut0 = torch.futures.Future()
>>> fut1 = torch.futures.Future()
>>>
>>> fut = torch.futures.collect_all([fut0, fut1])
>>>
>>> fut0.set_result(0)
>>> fut1.set_result(1)
>>>
>>> fut_list = fut.wait()
>>> print(f"fut0 result = {fut_list[0].wait()}")
>>> print(f"fut1 result = {fut_list[1].wait()}")
>>> # outputs:
>>> # fut0 result = 0
>>> # fut1 result = 1
"""
return torch._C._collect_all(futures)
[docs]def wait_all(futures):
r"""
Waits for all provided futures to be complete, and returns
the list of completed values.
Arguments:
futures (list): a list of :class:`~torch.futures.Future` object.
Returns:
A list of the completed :class:`~torch.futures.Future` results. This
method will throw an error if ``wait`` on any
:class:`~torch.futures.Future` throws.
"""
return [fut.wait() for fut in torch._C._collect_all(futures).wait()]
T = TypeVar("T")
GenericWithOneTypeVar = Generic[T]
try:
# Combine the implementation class and the type class.
class Future(_PyFuture, GenericWithOneTypeVar):
r"""
Wrapper around a ``torch._C.Future`` which encapsulates an asynchronous
execution of a callable, e.g. :meth:`~torch.distributed.rpc.rpc_async`. It
also exposes a set of APIs to add callback functions and set results.
"""
pass
except TypeError as exc:
# TypeError: metaclass conflict: the metaclass of a derived class
# must be a (non-strict) subclass of the metaclasses of all its bases
class FutureMeta(_PyFuture.__class__, GenericWithOneTypeVar.__class__):
pass
# Combine the implementation class and the type class.
class Future(_PyFuture, GenericWithOneTypeVar, metaclass=FutureMeta):
r"""
Wrapper around a ``torch._C.Future`` which encapsulates an asynchronous
execution of a callable, e.g. :meth:`~torch.distributed.rpc.rpc_async`. It
also exposes a set of APIs to add callback functions and set results.
"""
pass