Source code for torch.distributed.rpc.backend_registry
from __future__ import absolute_import, division, print_function, unicode_literals
import collections
from datetime import timedelta
import enum
import torch.distributed as dist
from . import constants as rpc_constants
BackendValue = collections.namedtuple(
"BackendValue", ["construct_rpc_backend_options_handler", "init_backend_handler"]
)
def _backend_type_repr(self):
return "BackendType." + self.name
_backend_type_doc = """
An enum class of available backends.
PyTorch ships with two builtin backends: ``BackendType.PROCESS_GROUP`` and
``BackendType.TENSORPIPE``. Additional ones can be registered using the
:func:`~torch.distributed.rpc.backend_registry.register_backend` function.
"""
# Create an enum type, `BackendType`, with empty members.
BackendType = enum.Enum(value="BackendType", names={})
BackendType.__repr__ = _backend_type_repr
BackendType.__doc__ = _backend_type_doc
def backend_registered(backend_name):
"""
Checks if backend_name is registered as an RPC backend.
Arguments:
backend_name (str): string to identify the RPC backend.
Returns:
True if the backend has been registered with ``register_backend``, else
False.
"""
return backend_name in BackendType.__members__.keys()
def register_backend(
backend_name, construct_rpc_backend_options_handler, init_backend_handler
):
"""Registers a new RPC backend.
Arguments:
backend_name (str): backend string to identify the handler.
construct_rpc_backend_options_handler (function):
Handler that is invoked when
rpc_backend.construct_rpc_backend_options(**dict) is called.
init_backend_handler (function): Handler that is invoked when the
`_init_rpc_backend()` function is called with a backend.
This returns the agent.
"""
global BackendType
if backend_registered(backend_name):
raise RuntimeError("RPC backend {}: already registered".format(backend_name))
# Create a new enum type, `BackendType`, with extended members.
existing_enum_dict = {member.name: member.value for member in BackendType}
extended_enum_dict = dict(
{
backend_name: BackendValue(
construct_rpc_backend_options_handler=construct_rpc_backend_options_handler,
init_backend_handler=init_backend_handler,
)
},
**existing_enum_dict
)
BackendType = enum.Enum(value="BackendType", names=extended_enum_dict)
BackendType.__repr__ = _backend_type_repr
BackendType.__doc__ = _backend_type_doc
return BackendType[backend_name]
def construct_rpc_backend_options(
backend,
rpc_timeout=rpc_constants.DEFAULT_RPC_TIMEOUT_SEC,
init_method=rpc_constants.DEFAULT_INIT_METHOD,
**kwargs
):
return backend.value.construct_rpc_backend_options_handler(
rpc_timeout, init_method, **kwargs
)
def init_backend(backend, *args, **kwargs):
return backend.value.init_backend_handler(*args, **kwargs)
def _process_group_construct_rpc_backend_options_handler(
rpc_timeout,
init_method,
num_send_recv_threads=rpc_constants.DEFAULT_NUM_SEND_RECV_THREADS,
**kwargs
):
from . import ProcessGroupRpcBackendOptions
return ProcessGroupRpcBackendOptions(
rpc_timeout=rpc_timeout,
init_method=init_method,
num_send_recv_threads=num_send_recv_threads
)
def _init_process_group(store, rank, world_size):
# Initialize ProcessGroup.
process_group_timeout = rpc_constants.DEFAULT_PROCESS_GROUP_TIMEOUT
# We're using a bunch of private APIs here since `new_group` requires the
# default group to be initialized.
group = dist.ProcessGroupGloo(store, rank, world_size, process_group_timeout)
assert group is not None, "Failed to initialize default ProcessGroup."
if (rank != -1) and (rank != group.rank()):
raise RuntimeError(
"rank argument {} doesn't match pg rank {}".format(rank, group.rank())
)
if (world_size != -1) and (world_size != group.size()):
raise RuntimeError(
"world_size argument {} doesn't match pg size {}".format(
world_size, group.size()
)
)
return group
def _process_group_init_backend_handler(
store, name, rank, world_size, rpc_backend_options
):
from . import ProcessGroupAgent
group = _init_process_group(store, rank, world_size)
# TODO: add try-except and destroy _agent in all processes if any fails.
return ProcessGroupAgent(
name,
group,
rpc_backend_options.num_send_recv_threads,
timedelta(seconds=rpc_backend_options.rpc_timeout),
)
register_backend(
"PROCESS_GROUP",
_process_group_construct_rpc_backend_options_handler,
_process_group_init_backend_handler,
)
def _tensorpipe_construct_rpc_backend_options_handler(
rpc_timeout,
init_method,
num_worker_threads=rpc_constants.DEFAULT_NUM_WORKER_THREADS,
_transports=None,
_channels=None,
**kwargs
):
from . import TensorPipeRpcBackendOptions
return TensorPipeRpcBackendOptions(
rpc_timeout=rpc_timeout,
init_method=init_method,
num_worker_threads=num_worker_threads,
_transports=_transports,
_channels=_channels,
)
def _tensorpipe_init_backend_handler(store, name, rank, world_size, rpc_backend_options):
from . import TensorPipeRpcBackendOptions
from . import TensorPipeAgent
if not isinstance(store, dist.Store):
raise TypeError("`store` must be a c10d::Store. {}".format(store))
if not isinstance(
rpc_backend_options, TensorPipeRpcBackendOptions
):
raise TypeError(
"`rpc_backend_options` must be a `TensorPipeRpcBackendOptions`. {}".format(
rpc_backend_options
)
)
# The agent's join method is required to behave like a barrier and perform
# collective operations, for which it relies on a process group, instead of
# re-implementing this on top of RPCs.
group = _init_process_group(store, rank, world_size)
# TODO: add try-except and destroy _agent in all processes if any fails.
return TensorPipeAgent(
store, name, rank, world_size, group, rpc_backend_options
)
register_backend(
"TENSORPIPE",
_tensorpipe_construct_rpc_backend_options_handler,
_tensorpipe_init_backend_handler,
)