Shortcuts

Source code for torch.autograd.grad_mode

import torch
import functools
import inspect

class _DecoratorContextManager:
    """Allow a context manager to be used as a decorator"""

    def __call__(self, func):
        if inspect.isgeneratorfunction(func):
            return self._wrap_generator(func)

        @functools.wraps(func)
        def decorate_context(*args, **kwargs):
            with self:
                return func(*args, **kwargs)
        return decorate_context

    def _wrap_generator(self, func):
        """Wrap each generator invocation with the context manager"""
        @functools.wraps(func)
        def generator_context(*args, **kwargs):
            gen = func(*args, **kwargs)
            while True:
                try:
                    with self:
                        x = next(gen)
                    yield x
                except StopIteration:
                    break
        return generator_context


[docs]class no_grad(_DecoratorContextManager): r"""Context-manager that disabled gradient calculation. Disabling gradient calculation is useful for inference, when you are sure that you will not call :meth:`Tensor.backward()`. It will reduce memory consumption for computations that would otherwise have `requires_grad=True`. In this mode, the result of every computation will have `requires_grad=False`, even when the inputs have `requires_grad=True`. This context manager is thread local; it will not affect computation in other threads. Also functions as a decorator. (Make sure to instantiate with parenthesis.) Example:: >>> x = torch.tensor([1], requires_grad=True) >>> with torch.no_grad(): ... y = x * 2 >>> y.requires_grad False >>> @torch.no_grad() ... def doubler(x): ... return x * 2 >>> z = doubler(x) >>> z.requires_grad False """ def __enter__(self): self.prev = torch.is_grad_enabled() torch._C.set_grad_enabled(False) def __exit__(self, *args): torch.set_grad_enabled(self.prev)
[docs]class enable_grad(_DecoratorContextManager): r"""Context-manager that enables gradient calculation. Enables gradient calculation, if it has been disabled via :class:`~no_grad` or :class:`~set_grad_enabled`. This context manager is thread local; it will not affect computation in other threads. Also functions as a decorator. (Make sure to instantiate with parenthesis.) Example:: >>> x = torch.tensor([1], requires_grad=True) >>> with torch.no_grad(): ... with torch.enable_grad(): ... y = x * 2 >>> y.requires_grad True >>> y.backward() >>> x.grad >>> @torch.enable_grad() ... def doubler(x): ... return x * 2 >>> with torch.no_grad(): ... z = doubler(x) >>> z.requires_grad True """ def __enter__(self): self.prev = torch.is_grad_enabled() torch._C.set_grad_enabled(True) def __exit__(self, *args): torch.set_grad_enabled(self.prev)
[docs]class set_grad_enabled(object): r"""Context-manager that sets gradient calculation to on or off. ``set_grad_enabled`` will enable or disable grads based on its argument :attr:`mode`. It can be used as a context-manager or as a function. This context manager is thread local; it will not affect computation in other threads. Arguments: mode (bool): Flag whether to enable grad (``True``), or disable (``False``). This can be used to conditionally enable gradients. Example:: >>> x = torch.tensor([1], requires_grad=True) >>> is_train = False >>> with torch.set_grad_enabled(is_train): ... y = x * 2 >>> y.requires_grad False >>> torch.set_grad_enabled(True) >>> y = x * 2 >>> y.requires_grad True >>> torch.set_grad_enabled(False) >>> y = x * 2 >>> y.requires_grad False """ def __init__(self, mode): self.prev = torch.is_grad_enabled() torch._C.set_grad_enabled(mode) def __enter__(self): pass def __exit__(self, *args): torch.set_grad_enabled(self.prev)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources