Shortcuts

Source code for torch._lobpcg

"""Locally Optimal Block Preconditioned Conjugate Gradient methods.
"""
# Author: Pearu Peterson
# Created: February 2020

from typing import Dict, Tuple, Optional

import torch
from torch import Tensor
from . import _linalg_utils as _utils
from ._overrides import has_torch_function, handle_torch_function


__all__ = ['lobpcg']


[docs]def lobpcg(A, # type: Tensor k=None, # type: Optional[int] B=None, # type: Optional[Tensor] X=None, # type: Optional[Tensor] n=None, # type: Optional[int] iK=None, # type: Optional[Tensor] niter=None, # type: Optional[int] tol=None, # type: Optional[float] largest=None, # type: Optional[bool] method=None, # type: Optional[str] tracker=None, # type: Optional[None] ortho_iparams=None, # type: Optional[Dict[str, int]] ortho_fparams=None, # type: Optional[Dict[str, float]] ortho_bparams=None, # type: Optional[Dict[str, bool]] ): # type: (...) -> Tuple[Tensor, Tensor] """Find the k largest (or smallest) eigenvalues and the corresponding eigenvectors of a symmetric positive defined generalized eigenvalue problem using matrix-free LOBPCG methods. This function is a front-end to the following LOBPCG algorithms selectable via `method` argument: `method="basic"` - the LOBPCG method introduced by Andrew Knyazev, see [Knyazev2001]. A less robust method, may fail when Cholesky is applied to singular input. `method="ortho"` - the LOBPCG method with orthogonal basis selection [StathopoulosEtal2002]. A robust method. Supported inputs are dense, sparse, and batches of dense matrices. .. note:: In general, the basic method spends least time per iteration. However, the robust methods converge much faster and are more stable. So, the usage of the basic method is generally not recommended but there exist cases where the usage of the basic method may be preferred. Arguments: A (Tensor): the input tensor of size :math:`(*, m, m)` B (Tensor, optional): the input tensor of size :math:`(*, m, m)`. When not specified, `B` is interpereted as identity matrix. X (tensor, optional): the input tensor of size :math:`(*, m, n)` where `k <= n <= m`. When specified, it is used as initial approximation of eigenvectors. X must be a dense tensor. iK (tensor, optional): the input tensor of size :math:`(*, m, m)`. When specified, it will be used as preconditioner. k (integer, optional): the number of requested eigenpairs. Default is the number of :math:`X` columns (when specified) or `1`. n (integer, optional): if :math:`X` is not specified then `n` specifies the size of the generated random approximation of eigenvectors. Default value for `n` is `k`. If :math:`X` is specifed, the value of `n` (when specified) must be the number of :math:`X` columns. tol (float, optional): residual tolerance for stopping criterion. Default is `feps ** 0.5` where `feps` is smallest non-zero floating-point number of the given input tensor `A` data type. largest (bool, optional): when True, solve the eigenproblem for the largest eigenvalues. Otherwise, solve the eigenproblem for smallest eigenvalues. Default is `True`. method (str, optional): select LOBPCG method. See the description of the function above. Default is "ortho". niter (int, optional): maximum number of iterations. When reached, the iteration process is hard-stopped and the current approximation of eigenpairs is returned. For infinite iteration but until convergence criteria is met, use `-1`. tracker (callable, optional) : a function for tracing the iteration process. When specified, it is called at each iteration step with LOBPCG instance as an argument. The LOBPCG instance holds the full state of the iteration process in the following attributes: `iparams`, `fparams`, `bparams` - dictionaries of integer, float, and boolean valued input parameters, respectively `ivars`, `fvars`, `bvars`, `tvars` - dictionaries of integer, float, boolean, and Tensor valued iteration variables, respectively. `A`, `B`, `iK` - input Tensor arguments. `E`, `X`, `S`, `R` - iteration Tensor variables. For instance: `ivars["istep"]` - the current iteration step `X` - the current approximation of eigenvectors `E` - the current approximation of eigenvalues `R` - the current residual `ivars["converged_count"]` - the current number of converged eigenpairs `tvars["rerr"]` - the current state of convergence criteria Note that when `tracker` stores Tensor objects from the LOBPCG instance, it must make copies of these. If `tracker` sets `bvars["force_stop"] = True`, the iteration process will be hard-stopped. ortho_iparams, ortho_fparams, ortho_bparams (dict, optional): various parameters to LOBPCG algorithm when using `method="ortho"`. Returns: E (Tensor): tensor of eigenvalues of size :math:`(*, k)` X (Tensor): tensor of eigenvectors of size :math:`(*, m, k)` References: [Knyazev2001] Andrew V. Knyazev. (2001) Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method. SIAM J. Sci. Comput., 23(2), 517-541. (25 pages) https://epubs.siam.org/doi/abs/10.1137/S1064827500366124 [StathopoulosEtal2002] Andreas Stathopoulos and Kesheng Wu. (2002) A Block Orthogonalization Procedure with Constant Synchronization Requirements. SIAM J. Sci. Comput., 23(6), 2165-2182. (18 pages) https://epubs.siam.org/doi/10.1137/S1064827500370883 [DuerschEtal2018] Jed A. Duersch, Meiyue Shao, Chao Yang, Ming Gu. (2018) A Robust and Efficient Implementation of LOBPCG. SIAM J. Sci. Comput., 40(5), C655-C676. (22 pages) https://epubs.siam.org/doi/abs/10.1137/17M1129830 """ if not torch.jit.is_scripting(): tensor_ops = (A, B, X, iK) if (not set(map(type, tensor_ops)).issubset((torch.Tensor, type(None))) and has_torch_function(tensor_ops)): return handle_torch_function( lobpcg, tensor_ops, A, k=k, B=B, X=X, n=n, iK=iK, niter=niter, tol=tol, largest=largest, method=method, tracker=tracker, ortho_iparams=ortho_iparams, ortho_fparams=ortho_fparams, ortho_bparams=ortho_bparams) # A must be square: assert A.shape[-2] == A.shape[-1], A.shape if B is not None: # A and B must have the same shapes: assert A.shape == B.shape, (A.shape, B.shape) dtype = _utils.get_floating_dtype(A) device = A.device if tol is None: feps = {torch.float32: 1.2e-07, torch.float64: 2.23e-16}[dtype] tol = feps ** 0.5 m = A.shape[-1] k = (1 if X is None else X.shape[-1]) if k is None else k n = (k if n is None else n) if X is None else X.shape[-1] if (m < 3 * n): raise ValueError( 'LPBPCG algorithm is not applicable when the number of A rows (={})' ' is smaller than 3 x the number of requested eigenpairs (={})' .format(m, n)) method = 'ortho' if method is None else method iparams = { 'm': m, 'n': n, 'k': k, 'niter': 1000 if niter is None else niter, } fparams = { 'tol': tol, } bparams = { 'largest': True if largest is None else largest } if method == 'ortho': if ortho_iparams is not None: iparams.update(ortho_iparams) if ortho_fparams is not None: fparams.update(ortho_fparams) if ortho_bparams is not None: bparams.update(ortho_bparams) iparams['ortho_i_max'] = iparams.get('ortho_i_max', 3) iparams['ortho_j_max'] = iparams.get('ortho_j_max', 3) fparams['ortho_tol'] = fparams.get('ortho_tol', tol) fparams['ortho_tol_drop'] = fparams.get('ortho_tol_drop', tol) fparams['ortho_tol_replace'] = fparams.get('ortho_tol_replace', tol) bparams['ortho_use_drop'] = bparams.get('ortho_use_drop', False) if not torch.jit.is_scripting(): LOBPCG.call_tracker = LOBPCG_call_tracker if len(A.shape) > 2: N = int(torch.prod(torch.tensor(A.shape[:-2]))) bA = A.reshape((N,) + A.shape[-2:]) bB = B.reshape((N,) + A.shape[-2:]) if B is not None else None bX = X.reshape((N,) + X.shape[-2:]) if X is not None else None bE = torch.empty((N, k), dtype=dtype, device=device) bXret = torch.empty((N, m, k), dtype=dtype, device=device) for i in range(N): A_ = bA[i] B_ = bB[i] if bB is not None else None X_ = torch.randn((m, n), dtype=dtype, device=device) if bX is None else bX[i] assert len(X_.shape) == 2 and X_.shape == (m, n), (X_.shape, (m, n)) iparams['batch_index'] = i worker = LOBPCG(A_, B_, X_, iK, iparams, fparams, bparams, method, tracker) worker.run() bE[i] = worker.E[:k] bXret[i] = worker.X[:, :k] if not torch.jit.is_scripting(): LOBPCG.call_tracker = LOBPCG_call_tracker_orig return bE.reshape(A.shape[:-2] + (k,)), bXret.reshape(A.shape[:-2] + (m, k)) X = torch.randn((m, n), dtype=dtype, device=device) if X is None else X assert len(X.shape) == 2 and X.shape == (m, n), (X.shape, (m, n)) worker = LOBPCG(A, B, X, iK, iparams, fparams, bparams, method, tracker) worker.run() if not torch.jit.is_scripting(): LOBPCG.call_tracker = LOBPCG_call_tracker_orig return worker.E[:k], worker.X[:, :k]
class LOBPCG(object): """Worker class of LOBPCG methods. """ def __init__(self, A, # type: Optional[Tensor] B, # type: Optional[Tensor] X, # type: Tensor iK, # type: Optional[Tensor] iparams, # type: Dict[str, int] fparams, # type: Dict[str, float] bparams, # type: Dict[str, bool] method, # type: str tracker # type: Optional[None] ): # type: (...) -> None # constant parameters self.A = A self.B = B self.iK = iK self.iparams = iparams self.fparams = fparams self.bparams = bparams self.method = method self.tracker = tracker m = iparams['m'] n = iparams['n'] # variable parameters self.X = X self.E = torch.zeros((n, ), dtype=X.dtype, device=X.device) self.R = torch.zeros((m, n), dtype=X.dtype, device=X.device) self.S = torch.zeros((m, 3 * n), dtype=X.dtype, device=X.device) self.tvars = {} # type: Dict[str, Tensor] self.ivars = {'istep': 0} # type: Dict[str, int] self.fvars = {'_': 0.0} # type: Dict[str, float] self.bvars = {'_': False} # type: Dict[str, bool] def __str__(self): lines = ['LOPBCG:'] lines += [' iparams={}'.format(self.iparams)] lines += [' fparams={}'.format(self.fparams)] lines += [' bparams={}'.format(self.bparams)] lines += [' ivars={}'.format(self.ivars)] lines += [' fvars={}'.format(self.fvars)] lines += [' bvars={}'.format(self.bvars)] lines += [' tvars={}'.format(self.tvars)] lines += [' A={}'.format(self.A)] lines += [' B={}'.format(self.B)] lines += [' iK={}'.format(self.iK)] lines += [' X={}'.format(self.X)] lines += [' E={}'.format(self.E)] r = '' for line in lines: r += line + '\n' return r def update(self): """Set and update iteration variables. """ if self.ivars['istep'] == 0: X_norm = float(torch.norm(self.X)) iX_norm = X_norm ** -1 A_norm = float(torch.norm(_utils.matmul(self.A, self.X))) * iX_norm B_norm = float(torch.norm(_utils.matmul(self.B, self.X))) * iX_norm self.fvars['X_norm'] = X_norm self.fvars['A_norm'] = A_norm self.fvars['B_norm'] = B_norm self.ivars['iterations_left'] = self.iparams['niter'] self.ivars['converged_count'] = 0 self.ivars['converged_end'] = 0 if self.method == 'ortho': self._update_ortho() else: self._update_basic() self.ivars['iterations_left'] = self.ivars['iterations_left'] - 1 self.ivars['istep'] = self.ivars['istep'] + 1 def update_residual(self): """Update residual R from A, B, X, E. """ mm = _utils.matmul self.R = mm(self.A, self.X) - mm(self.B, self.X) * self.E def update_converged_count(self): """Determine the number of converged eigenpairs using backward stable convergence criterion, see discussion in Sec 4.3 of [DuerschEtal2018]. Users may redefine this method for custom convergence criteria. """ # (...) -> int prev_count = self.ivars['converged_count'] tol = self.fparams['tol'] A_norm = self.fvars['A_norm'] B_norm = self.fvars['B_norm'] E, X, R = self.E, self.X, self.R rerr = torch.norm(R, 2, (0, )) * (torch.norm(X, 2, (0, )) * (A_norm + E[:X.shape[-1]] * B_norm)) ** -1 converged = rerr < tol count = 0 for b in converged: if not b: # ignore convergence of following pairs to ensure # strict ordering of eigenpairs break count += 1 assert count >= prev_count, ( 'the number of converged eigenpairs ' '(was %s, got %s) cannot decrease' % (prev_count, count)) self.ivars['converged_count'] = count self.tvars['rerr'] = rerr return count def stop_iteration(self): """Return True to stop iterations. Note that tracker (if defined) can force-stop iterations by setting ``worker.bvars['force_stop'] = True``. """ return (self.bvars.get('force_stop', False) or self.ivars['iterations_left'] == 0 or self.ivars['converged_count'] >= self.iparams['k']) def run(self): """Run LOBPCG iterations. Use this method as a template for implementing LOBPCG iteration scheme with custom tracker that is compatible with TorchScript. """ self.update() if not torch.jit.is_scripting() and self.tracker is not None: self.call_tracker() while not self.stop_iteration(): self.update() if not torch.jit.is_scripting() and self.tracker is not None: self.call_tracker() @torch.jit.unused def call_tracker(self): """Interface for tracking iteration process in Python mode. Tracking the iteration process is disabled in TorchScript mode. In fact, one should specify tracker=None when JIT compiling functions using lobpcg. """ # do nothing when in TorchScript mode pass # Internal methods def _update_basic(self): """ Update or initialize iteration variables when `method == "basic"`. """ mm = torch.matmul ns = self.ivars['converged_end'] nc = self.ivars['converged_count'] n = self.iparams['n'] largest = self.bparams['largest'] if self.ivars['istep'] == 0: Ri = self._get_rayleigh_ritz_transform(self.X) M = _utils.qform(_utils.qform(self.A, self.X), Ri) E, Z = _utils.symeig(M, largest) self.X[:] = mm(self.X, mm(Ri, Z)) self.E[:] = E np = 0 self.update_residual() nc = self.update_converged_count() self.S[..., :n] = self.X W = _utils.matmul(self.iK, self.R) self.ivars['converged_end'] = ns = n + np + W.shape[-1] self.S[:, n + np:ns] = W else: S_ = self.S[:, nc:ns] Ri = self._get_rayleigh_ritz_transform(S_) M = _utils.qform(_utils.qform(self.A, S_), Ri) E_, Z = _utils.symeig(M, largest) self.X[:, nc:] = mm(S_, mm(Ri, Z[:, :n - nc])) self.E[nc:] = E_[:n - nc] P = mm(S_, mm(Ri, Z[:, n:2 * n - nc])) np = P.shape[-1] self.update_residual() nc = self.update_converged_count() self.S[..., :n] = self.X self.S[:, n:n + np] = P W = _utils.matmul(self.iK, self.R[:, nc:]) self.ivars['converged_end'] = ns = n + np + W.shape[-1] self.S[:, n + np:ns] = W def _update_ortho(self): """ Update or initialize iteration variables when `method == "ortho"`. """ mm = torch.matmul ns = self.ivars['converged_end'] nc = self.ivars['converged_count'] n = self.iparams['n'] largest = self.bparams['largest'] if self.ivars['istep'] == 0: Ri = self._get_rayleigh_ritz_transform(self.X) M = _utils.qform(_utils.qform(self.A, self.X), Ri) E, Z = _utils.symeig(M, largest) self.X = mm(self.X, mm(Ri, Z)) self.update_residual() np = 0 nc = self.update_converged_count() self.S[:, :n] = self.X W = self._get_ortho(self.R, self.X) ns = self.ivars['converged_end'] = n + np + W.shape[-1] self.S[:, n + np:ns] = W else: S_ = self.S[:, nc:ns] # Rayleigh-Ritz procedure E_, Z = _utils.symeig(_utils.qform(self.A, S_), largest) # Update E, X, P self.X[:, nc:] = mm(S_, Z[:, :n - nc]) self.E[nc:] = E_[:n - nc] P = mm(S_, mm(Z[:, n - nc:], _utils.basis(_utils.transpose(Z[:n - nc, n - nc:])))) np = P.shape[-1] # check convergence self.update_residual() nc = self.update_converged_count() # update S self.S[:, :n] = self.X self.S[:, n:n + np] = P W = self._get_ortho(self.R[:, nc:], self.S[:, :n + np]) ns = self.ivars['converged_end'] = n + np + W.shape[-1] self.S[:, n + np:ns] = W def _get_rayleigh_ritz_transform(self, S): """Return a transformation matrix that is used in Rayleigh-Ritz procedure for reducing a general eigenvalue problem :math:`(S^TAS) C = (S^TBS) C E` to a standard eigenvalue problem :math: `(Ri^T S^TAS Ri) Z = Z E` where `C = Ri Z`. .. note:: In the original Rayleight-Ritz procedure in [DuerschEtal2018], the problem is formulated as follows:: SAS = S^T A S SBS = S^T B S D = (<diagonal matrix of SBS>) ** -1/2 R^T R = Cholesky(D SBS D) Ri = D R^-1 solve symeig problem Ri^T SAS Ri Z = Theta Z C = Ri Z To reduce the number of matrix products (denoted by empty space between matrices), here we introduce element-wise products (denoted by symbol `*`) so that the Rayleight-Ritz procedure becomes:: SAS = S^T A S SBS = S^T B S d = (<diagonal of SBS>) ** -1/2 # this is 1-d column vector dd = d d^T # this is 2-d matrix R^T R = Cholesky(dd * SBS) Ri = R^-1 * d # broadcasting solve symeig problem Ri^T SAS Ri Z = Theta Z C = Ri Z where `dd` is 2-d matrix that replaces matrix products `D M D` with one element-wise product `M * dd`; and `d` replaces matrix product `D M` with element-wise product `M * d`. Also, creating the diagonal matrix `D` is avoided. Arguments: S (Tensor): the matrix basis for the search subspace, size is :math:`(m, n)`. Returns: Ri (tensor): upper-triangular transformation matrix of size :math:`(n, n)`. """ B = self.B mm = torch.matmul SBS = _utils.qform(B, S) d_row = SBS.diagonal(0, -2, -1) ** -0.5 d_col = d_row.reshape(d_row.shape[0], 1) R = torch.cholesky((SBS * d_row) * d_col, upper=True) # TODO: could use LAPACK ?trtri as R is upper-triangular Rinv = torch.inverse(R) return Rinv * d_col def _get_svqb(self, U, # Tensor drop, # bool tau # float ): # type: (Tensor, bool, float) -> Tensor """Return B-orthonormal U. .. note:: When `drop` is `False` then `svqb` is based on the Algorithm 4 from [DuerschPhD2015] that is a slight modification of the corresponding algorithm introduced in [StathopolousWu2002]. Arguments: U (Tensor) : initial approximation, size is (m, n) drop (bool) : when True, drop columns that contribution to the `span([U])` is small. tau (float) : positive tolerance Returns: U (Tensor) : B-orthonormal columns (:math:`U^T B U = I`), size is (m, n1), where `n1 = n` if `drop` is `False, otherwise `n1 <= n`. """ if torch.numel(U) == 0: return U UBU = _utils.qform(self.B, U) d = UBU.diagonal(0, -2, -1) # Detect and drop exact zero columns from U. While the test # `abs(d) == 0` is unlikely to be True for random data, it is # possible to construct input data to lobpcg where it will be # True leading to a failure (notice the `d ** -0.5` operation # in the original algorithm). To prevent the failure, we drop # the exact zero columns here and then continue with the # original algorithm below. nz = torch.where(abs(d) != 0.0) assert len(nz) == 1, nz if len(nz[0]) < len(d): U = U[:, nz[0]] if torch.numel(U) == 0: return U UBU = _utils.qform(self.B, U) d = UBU.diagonal(0, -2, -1) nz = torch.where(abs(d) != 0.0) assert len(nz[0]) == len(d) # The original algorithm 4 from [DuerschPhD2015]. d_col = (d ** -0.5).reshape(d.shape[0], 1) DUBUD = (UBU * d_col) * _utils.transpose(d_col) E, Z = _utils.symeig(DUBUD, eigenvectors=True) t = tau * abs(E).max() if drop: keep = torch.where(E > t) assert len(keep) == 1, keep E = E[keep[0]] Z = Z[:, keep[0]] d_col = d_col[keep[0]] else: E[(torch.where(E < t))[0]] = t return torch.matmul(U * _utils.transpose(d_col), Z * E ** -0.5) def _get_ortho(self, U, V): """Return B-orthonormal U with columns are B-orthogonal to V. .. note:: When `bparams["ortho_use_drop"] == False` then `_get_ortho` is based on the Algorithm 3 from [DuerschPhD2015] that is a slight modification of the corresponding algorithm introduced in [StathopolousWu2002]. Otherwise, the method implements Algorithm 6 from [DuerschPhD2015] .. note:: If all U columns are B-collinear to V then the returned tensor U will be empty. Arguments: U (Tensor) : initial approximation, size is (m, n) V (Tensor) : B-orthogonal external basis, size is (m, k) Returns: U (Tensor) : B-orthonormal columns (:math:`U^T B U = I`) such that :math:`V^T B U=0`, size is (m, n1), where `n1 = n` if `drop` is `False, otherwise `n1 <= n`. """ mm = torch.matmul mm_B = _utils.matmul m = self.iparams['m'] tau_ortho = self.fparams['ortho_tol'] tau_drop = self.fparams['ortho_tol_drop'] tau_replace = self.fparams['ortho_tol_replace'] i_max = self.iparams['ortho_i_max'] j_max = self.iparams['ortho_j_max'] # when use_drop==True, enable dropping U columns that have # small contribution to the `span([U, V])`. use_drop = self.bparams['ortho_use_drop'] # clean up variables from the previous call for vkey in list(self.fvars.keys()): if vkey.startswith('ortho_') and vkey.endswith('_rerr'): self.fvars.pop(vkey) self.ivars.pop('ortho_i', 0) self.ivars.pop('ortho_j', 0) BV_norm = torch.norm(mm_B(self.B, V)) BU = mm_B(self.B, U) VBU = mm(_utils.transpose(V), BU) i = j = 0 stats = '' for i in range(i_max): U = U - mm(V, VBU) drop = False tau_svqb = tau_drop for j in range(j_max): if use_drop: U = self._get_svqb(U, drop, tau_svqb) drop = True tau_svqb = tau_replace else: U = self._get_svqb(U, False, tau_replace) if torch.numel(U) == 0: # all initial U columns are B-collinear to V self.ivars['ortho_i'] = i self.ivars['ortho_j'] = j return U BU = mm_B(self.B, U) UBU = mm(_utils.transpose(U), BU) U_norm = torch.norm(U) BU_norm = torch.norm(BU) R = UBU - torch.eye(UBU.shape[-1], device=UBU.device, dtype=UBU.dtype) R_norm = torch.norm(R) # https://github.com/pytorch/pytorch/issues/33810 workaround: rerr = float(R_norm) * float(BU_norm * U_norm) ** -1 vkey = 'ortho_UBUmI_rerr[{}, {}]'.format(i, j) self.fvars[vkey] = rerr if rerr < tau_ortho: break VBU = mm(_utils.transpose(V), BU) VBU_norm = torch.norm(VBU) U_norm = torch.norm(U) rerr = float(VBU_norm) * float(BV_norm * U_norm) ** -1 vkey = 'ortho_VBU_rerr[{}]'.format(i) self.fvars[vkey] = rerr if rerr < tau_ortho: break if m < U.shape[-1] + V.shape[-1]: raise ValueError( 'Overdetermined shape of U:' ' #B-cols(={}) >= #U-cols(={}) + #V-cols(={}) must hold' .format(self.B.shape[-1], U.shape[-1], V.shape[-1])) self.ivars['ortho_i'] = i self.ivars['ortho_j'] = j return U # Calling tracker is separated from LOBPCG definitions because # TorchScript does not support user-defined callback arguments: LOBPCG_call_tracker_orig = LOBPCG.call_tracker def LOBPCG_call_tracker(self): self.tracker(self)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources