torch.median¶
- 
torch.median(input) → Tensor¶ Returns the median value of all elements in the
inputtensor.Warning
This function produces deterministic (sub)gradients unlike
median(dim=0)- Parameters
 input (Tensor) – the input tensor.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 1.5219, -1.5212, 0.2202]]) >>> torch.median(a) tensor(0.2202)
- 
torch.median(input, dim=-1, keepdim=False, out=None) -> (Tensor, LongTensor) 
Returns a namedtuple
(values, indices)wherevaluesis the median value of each row of theinputtensor in the given dimensiondim. Andindicesis the index location of each median value found.By default,
dimis the last dimension of theinputtensor.If
keepdimisTrue, the output tensors are of the same size asinputexcept in the dimensiondimwhere they are of size 1. Otherwise,dimis squeezed (seetorch.squeeze()), resulting in the outputs tensor having 1 fewer dimension thaninput.Warning
indicesdoes not necessarily contain the first occurrence of each median value found, unless it is unique. The exact implementation details are device-specific. Do not expect the same result when run on CPU and GPU in general. For the same reason do not expect the gradients to be deterministic.- Parameters
 
Example:
>>> a = torch.randn(4, 5) >>> a tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) >>> torch.median(a, 1) torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3]))